If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+13x+2=0
a = 4; b = 13; c = +2;
Δ = b2-4ac
Δ = 132-4·4·2
Δ = 137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{137}}{2*4}=\frac{-13-\sqrt{137}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{137}}{2*4}=\frac{-13+\sqrt{137}}{8} $
| -16+3x=32+25× | | -8+k=-4+5k | | 85-w=210 | | (2x10^6)x=4x10^-7 | | x-(.10x)=693 | | 2x(2)-26=0 | | -5w=10-7w | | 11/5x+2=2 | | 10+10-s=9s-10 | | a÷3+8=14 | | -8z+2=1-9z | | 8/15=x/20 | | -(4a-12)=-5(2a-6) | | -4n-4(4n-3)=-148 | | (x+3)2+(x+4)2=(x+5)2 | | x=6(1)-7 | | 23X+30-12y=10 | | -b=10+9b | | -6(4x+4)=-168 | | 4+2x=5x-1 | | 9z+3z=9z+6 | | 193=4a+7(1-5a) | | 24+7y=52 | | 4(6y-7)+y=-3 | | 7(n+7)=84 | | 2x+5=-6x-3 | | 5+3d=3d+10-5d | | -105=7(1-4p) | | 1/2(3x-5)=1/4(x+8) | | -3(8-3b)=-87 | | 4.8+10m=7.74 | | -10f+7=-f-10+8 |